Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites
نویسندگان
چکیده
The purpose of this study was to investigate the mechanical and thermal properties of high-density polyethylene (HDPE) composites reinforced by bamboo pulp fibers (BPF). Using a twin-screw extruder, polymer composites were fabricated using BPF and bamboo flour (BF) as the reinforcement and HDPE as the matrix. Tensile and flexural tests of the HDPE composites were performed to determine the mechanical properties under different conditions. The thermal properties of HDPE composites were characterized by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The results showed that BPF improved the mechanical and thermal properties of the polymer composites more than did BF. The tensile and flexural strength of composites with 30 wt% BPF were increased by 61.46% and 22.94%, respectively, while the tensile and flexural modulus were increased by 84.52% and 27.30%, respectively. Compared to composites with 50 wt% BF, the T5% of composites with 50 wt% BPF increased by 20.18 °C. As the BPF content increased, the storage modulus (E’) and loss modulus (E”) initially increased, followed by a decrease. Compared to the BF/HDPE composites, BPF/HDPE composites reinforced at 30 wt% had a higher storage modulus (E’) and loss modulus (E”) and lower damping parameter (tanδ).
منابع مشابه
Fiber reinforced plastic composites using recycled materials
This work investigates the feasibility of using recycled high density polyethylene (rHDPE), recycled polypropylene (rPP) and old newsprint fiber (ONP) to manufacture fiber reinforced composites. The boards were made through air-forming and hot press. The effects of the fiber loading and coupling agent content on tensile, flexural, internal bond properties and water absorption and thickness swel...
متن کاملMechanical Characterization of Hybrid Bamboo/E-Glass Fibre Reinforced Polymer Epoxy Composites
Conventional fiber reinforced plastics (FRP’s) have long been important if not indispensable in many crucial applications such as transportation, renewable energy, defense applications, as well as many others. Composite materials are of interest to these industries due to their attractive properties including high strength to weight ratio and high modulus to weight ratio. Comprehensive research...
متن کاملTensile and Flexural Analysis of a Hybrid Bamboo/Jute Fiber-reinforced Composite with Polyester Matrix as a Sustainable Green Material for Wind Turbine Blades
Recently, there has been a fast growth in research and investigation in the natural fibre composite due to the advantages of these materials, such us low environmental impact, low cost and good mechanical properties compared to synthetic fibre composites. Much effort has gone into increasing the mechanical performance and applications of natural fibes. This paper examines the mechanical propert...
متن کاملBamboo–Fiber Filled High Density Polyethylene Composites: Effect of Coupling Treatment and Nanoclay
High density polyethylene (HDPE)/bamboo composites with different nanoclay and maleated polyethylene (MAPE) contents were fabricated by melt compounding. The compounding characteristics, clay dispersion, HDPE crystallization, and mechanical properties of the composites were studied. The equilibrium torque during compounding decreased with use of clay masterbatch and increased with the addition ...
متن کاملEffect of fabricated density and bamboo species on physical–mechanical properties of bamboo fiber bundle reinforced composites
Bamboo stems were subjected to a mechanical treatment process for the extraction of bamboo fiber bundles. The fiber bundles were used as reinforcement for the fabrication of high-performance composites with phenolic resins as matrix. The influence of fabricated density and bamboo species on physical– mechanical properties of bamboo fiber bundle reinforced composites (BFCs) was evaluated. The re...
متن کامل